Antinociceptive effects of systemic paeoniflorin on bee venom-induced various 'phenotypes' of nociception and hypersensitivity.

نویسندگان

  • Hou-You Yu
  • Ming-Gang Liu
  • Dan-Na Liu
  • Gang-Wei Shang
  • Yan Wang
  • Chao Qi
  • Kui-Ping Zhang
  • Zu-Jun Song
  • Jun Chen
چکیده

Paeoniflorin (PF), one of the active chemical compounds identified from the root of Paeonia lactiflora Pall, has been well-established to exhibit various neuroprotective actions in the central nervous system (CNS) after long-term daily administration. In the present study, by using the bee venom (BV) model of nociception and hypersensitivity, antinociceptive effects of PF were evaluated by intraperitoneal administration in conscious rats. When compared with saline control, systemic pre- and post-treatment with PF resulted in an apparent antinociception against both persistent spontaneous nociception and primary heat hypersensitivity, while for the primary mechanical hypersensitivity only pre-treatment was effective. Moreover, pre- and early post-treatment with PF (5 min after BV injection) could successfully suppress the occurrence and maintenance of the mirror-image heat hypersensitivity, whereas late post-treatment (3 h after BV) did not exert any significant impact. In the Rota-Rod treadmill test, PF administration did not affect the motor coordinating performance of rats. Furthermore, systemic PF application produced no significant influence upon BV-induced paw edema and swelling. Finally, the PF-produced antinociception was likely to be mediated by endogenous opioid receptors because of its naloxone-reversibility. Taken together, these results provide a new line of evidence showing that PF, besides its well-established neuroprotective actions in the CNS, is also able to produce analgesia against various 'phenotypes' of nociception and hypersensitivity via opioid receptor mediation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinal processing of bee venom-induced pain and hyperalgesia.

Subcutaneous injection of bee venom causes long-term neural activation and hypersensitization in the dorsal horn of the spinal cord, which contributes to the development and maintenance of various pain-related behaviors. The unique behavioral 'phenotypes' of nociception and hypersensitivity identified in the rodent bee venom test are believed to reflect a complex pathological state of inflammat...

متن کامل

Acupoint stimulation using bee venom attenuates formalin-induced pain behavior and spinal cord fos expression in rats.

In two previous reports, we have demonstrated that injection of bee venom (BV) into an acupoint produces a significant antinociceptive and anti-inflammatory effect in both a mouse model of visceral nociception and a rat model of chronic arthritis. The present study was designed to evaluate the potential antinociceptive effect of BV pretreatment on formalin-induced pain behavior and it associate...

متن کامل

Effect of Honey Bee Venom on Lewis Rats with Experimental Allergic Encephalomyelitis, a Model for Multiple Sclerosis

   Multiple sclerosis (MS) is a progressive and autoimmune neurodegenerative disease of the central nervous system (CNS). This disease is recognized through symptoms like inflammation, demyelination and the destruction of neurological actions. Experimental allergic encephalomyelitis (EAE) is a widely accepted animal model for MS. EAE is created in animals by injecting the tissue of myelin basic...

متن کامل

Effect of Honey Bee Venom on Lewis Rats with Experimental Allergic Encephalomyelitis, a Model for Multiple Sclerosis

   Multiple sclerosis (MS) is a progressive and autoimmune neurodegenerative disease of the central nervous system (CNS). This disease is recognized through symptoms like inflammation, demyelination and the destruction of neurological actions. Experimental allergic encephalomyelitis (EAE) is a widely accepted animal model for MS. EAE is created in animals by injecting the tissue of myelin basic...

متن کامل

Selective inhibitory effects of pregabalin on peripheral C but not A-delta fibers mediated nociception in intact and spinalized rats.

Effects of pregabalin (PGB, 20-80 mg/kg i.v. injection) on spinally-organized nociception were investigated in isoflurane-anesthetized intact and spinalized rats. Responses of single deep spinal dorsal horn (DH) (laminae IV-V) nociceptive-specific (NS) neurons receiving peripheral inputs from A-delta and C fibers to repetitive electrical stimulation (intensity: 3-5 mA; frequency: 1 Hz; pulse du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pharmacology, biochemistry, and behavior

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 2007